Sparse Signal Recovery for Direction-of-Arrival Estimation Based on Source Signal Subspace

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Signal Subspace Transformation for Direction-of-arrival Estimation of Wideband Sources in near Field

A novel adaptive signal subspace transformation for direction-of-arrival (DOA) estimation of wideband sources in the near-field is proposed in this paper. The method is composed of two transformations: signal subspace focusing (SSF) and far-field transformation (FFT). SSF aligns the signal subspaces for different frequencies in the bandwidth of the sources based on focusing matrices. FFT transf...

متن کامل

Array Signal Processing for Maximum Likelihood Direction-of-Arrival Estimation

Estimation of the emitters’ directions with an antenna array, or Direction-of-Arrival (DOA) estimation, is an essential problem in a large variety of applications such as radar, sonar, mobile communications, and seismic exploration, because it is a major method for location determination. In wireless communications, DOA estimation may significantly improve communication efficiency and network c...

متن کامل

A Sparse Signal Reconstruction Perspective for Direction-of-Arrival Estimation with Minimum Redundancy Linear Array

In this paper, a new direction of arrival (DOA) estimation method based on minimum redundancy linear array (MRLA) from the sparse signal reconstruction perspective is proposed. According to the structure feature of MRLA which is obtaining larger antenna aperture through a smaller number of array sensors, MRLA is combined with 1 SVD −  method to estimate signal DOAs. Simulations demonstrate tha...

متن کامل

Sparse Methods for Direction-of-Arrival Estimation

3 Sparse Representation and DOA estimation 7 3.1 Sparse Representation and Compressed Sensing . . . . . . . . . . . . . . . . . . . . . . . . 7 3.1.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.1.2 Convex Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.1.3 `q Optimization . . . . . . . . . . . . . . . . . . . ....

متن کامل

Subspace weighted l2, 1 minimization for sparse signal recovery

In this article, we propose a weighted l2,1 minimization algorithm for jointly-sparse signal recovery problem. The proposed algorithm exploits the relationship between the noise subspace and the overcomplete basis matrix for designing weights, i.e., large weights are appointed to the entries, whose indices are more likely to be outside of the row support of the jointly sparse signals, so that t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Applied Mathematics

سال: 2014

ISSN: 1110-757X,1687-0042

DOI: 10.1155/2014/530413